## PART A - GRAPH THEORY - 30 MARKS

## 1. Equivalent Graphs (4 marks)

Label the vertices from A to H and edges from 1 to 11 of the graph on the right to show that it is equivalent to the graph on the left.

If we redraw the graph on the left slightly to line up vertices $\mathrm{A}, \mathrm{E}, \mathrm{H}, \mathrm{C}$, we get the graph on the right


You can see that the graph is symmetric along the axis formed by B and D. You can also see the the subgraph FAED is symmetric along the axix formed by F and D , and the subgraph GHCD is symmetric along the axis formed by $G$ and $D$.

Therefore there will be four solutions, all of which with B and D in the same location, as shown on the diagram to the right.

## 2. Graph Degrees (6 marks)

For each of the following questions, either draw a graph with the requested properties, or explain convincingly (possibly by quoting a theorem) why such a graph cannot be drawn.
a) A graph with 5 vertices of degrees 5, 5, 4, 4, 3

The total degree of this graph would be 21 . However, according to the handshake theorem, the total degree of a graph must be even. Therefore it is not possible to draw such a graph.
b) A graph with 5 vertices of degrees 5, 5, 4, 4, 4

This graph, on the other hand is possible because it has a total degree of 22 which is even. There are many different solutions.

## 3. Acquaintance Graphs (8 marks)

Suppose that in a group of 6 people A, B, C, D, E, and F the following pairs of people are acquainted with each other: A and B, B and D, A and D, A and F, C and D, C and E, C and F.
a) Draw a graph $G$ to represent who is acquainted with whom

b) Draw a graph H to represent who is not acquainted with whom

c) What is $\mathrm{G} \cup \mathrm{H}$ ? This is $\mathrm{K}_{6}$, the complete graph with 6 vertices.

## 4. Connected Components (8 marks)

This question and the next one are based on this graph:

a) An edge of a graph whose removal disconnects the graph of which it is a part is called a "bridge". List all the bridges of the graph above.

4, 8, 9
b) If you were to remove all the bridges that you listed in part a) from the graph, how many connected components would this graph have? List them.

There would be 4 connected components corresponding to the following sets of vertices $\{A, B, F\},\{D\},\{I\}$, and $\{C, G, H, E, J\}$

## 5. Walks (4 marks)

For each of the 4 walks in the graph in question 4, Indicate with True of False in the table below whether the walks in the graph in question 4 have each of the properties

| Walk: | A1B3F2A4G | H6G5C7H11J12E10H | C8D8C7H6G5C | I9D8C5G4A |
| :--- | :---: | :---: | :---: | :---: |
| Path/Trail | T | T | F | T |
| (Simple) <br> path | F | F | F | T |
| Closed <br> walk | F | T | T | F |
| Circuit | F | T | F | F |
| Simple <br> circuit | F | F | F | F |

## PART B - SEQUENCES AND RECURRENCE RELATIONS - 10 MARKS

Given the sequence $a_{n}$ defined with the recurrence relation:

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=a_{n-1}+n+1 \quad \text { for } n>1
\end{aligned}
$$

1. Terms of a Sequence (5 marks)

Calculate $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$
Keep your intermediate answers as you will need them in the next question.
$a_{2}=a_{1}+2+1=1+2+1=4$
$\mathrm{a}_{3}=\mathrm{a}_{2}+3+1=1+2+1+3+1=1+2+3+2=8$
$\mathrm{a}_{4}=\mathrm{a}_{3}+4+1=1+2+1+3+1+4+1=1+2+3+4+3=13$
$\mathrm{a}_{5}=\mathrm{a}_{4}+5+1=1+2+1+3+1+4+1+5+1=1+2+3+4+5+4=19$
$\mathrm{a}_{6}=\mathrm{a}_{5}+6+1=1+2+1+3+1+4+1+5+1+6+1 \quad 1+2+3+4+5+6+5=264$

## 2. Iteration (5 marks)

Using iteration, solve the recurrence relation when $n \geq 1$ (i.e. find an analytic formula for $a_{n}$ ). Simplify your answer as much as possible, showing your work. In particular, your final answer should not contain sums and products.

Based on the pattern above, when $\mathrm{n}>1$
$\mathrm{a}_{\mathrm{n}}=\sum_{i=1}^{n} i+n-1=\frac{n(n+1)}{2}+n-1=\frac{n(n+1)+2(n-1)}{2}=\frac{n^{2}+3 n-2}{2}$
substituting for $\mathrm{n}=1$, the formula becomes $\frac{1^{2}+3-2}{2}=2 / 2=1$, so this formula also works when $\mathrm{n}=1$

## PART C - INDUCTION - 20 MARKS

Prove by induction that for all positive integers $\mathrm{n}, \sum_{i=2}^{n} i(i-1)=\frac{n(n-1)(n+1)}{3}$
No other method is acceptable.
Be sure to lay out your proof clearly and correctly and to justify every step.
Let $\mathrm{P}(\mathrm{n})$ be the property $\sum_{i=2}^{n} i(i-1)=\frac{n(n-1)(n+1)}{3}$
We must prove $\forall \mathrm{n} \in \mathbb{N}^{+} \mathrm{P}$ (n)
Proof:

Basic Step: $\mathrm{n}=1$

$$
\begin{aligned}
& \sum_{i=2}^{n} i(i-1)=\sum_{i=2}^{1} i(i-1)=0 \text { because } 1<2 \text { so the sum has no terms } \\
& \frac{n(n-1)(n+1)}{3}=\frac{1 \times 0 \times 2}{3}=0
\end{aligned}
$$

Therefore $\mathrm{P}(1)$ is true

Inductive step:
Assume that $\mathrm{P}(\mathrm{k})$ is true for some positive integer k ,
i.e, $\sum_{i=2}^{k} i(i-1)=\frac{k(k-1)(k+1)}{3}$ (inductive hypothesis)

We must show that $\mathrm{P}(\mathrm{k}+1)$ is also true,
i.e. we must show that $\sum_{i=2}^{k+1} i(i-1)=\frac{(k+1)(k+1-1)(k+1+1)}{3}$
i.e. we must show that $\sum_{i=2}^{k+1} i(i-1)=\frac{(k+1)(k)(k+2)}{3}$
$\sum_{i=2}^{k+1} i(i-1)$

$$
\begin{array}{ll}
=(k+1) k+\sum_{i=2}^{k} i(i-1) & \text { Taking the leading term out of the sum } \\
=(\mathrm{k}+1) \mathrm{k}+\frac{k(k-1)(k+1)}{3} & \text { by inductive hypothesis } \\
=\mathrm{k}(\mathrm{k}+1)\left(1+\frac{k-1}{3}\right) & \text { factoring } \mathrm{k}(\mathrm{k}+1) \\
=\frac{\mathrm{k}(\mathrm{k}+1)(3+k-1)}{3} & \text { algebra } \\
=\frac{(k+1)(k)(k+2)}{3} & \text { algebra }
\end{array}
$$

QED

